Copied to
clipboard

?

G = C4223D10order 320 = 26·5

23rd semidirect product of C42 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4223D10, C10.1372+ (1+4), C4⋊C433D10, (C4×D20)⋊13C2, (C4×C20)⋊7C22, C42D2036C2, C4.D208C2, C422C22D5, C22⋊D2027C2, D208C439C2, D10⋊D444C2, D10⋊Q840C2, (C2×D20)⋊29C22, C4⋊Dic561C22, C22⋊C4.40D10, D10.18(C4○D4), D10⋊C47C22, (C2×C20).193C23, (C2×C10).248C24, C59(C22.32C24), (C4×Dic5)⋊38C22, D10.12D448C2, D10.13D438C2, C2.62(D48D10), C23.54(C22×D5), Dic5.5D444C2, (C2×Dic10)⋊11C22, C10.D427C22, (C22×C10).62C23, (C23×D5).68C22, C22.269(C23×D5), C23.D5.64C22, (C2×Dic5).274C23, (C22×D5).111C23, C2.95(D5×C4○D4), (C2×C4×D5)⋊27C22, C4⋊C4⋊D541C2, (C5×C4⋊C4)⋊32C22, (D5×C22⋊C4)⋊20C2, (C5×C422C2)⋊3C2, C10.206(C2×C4○D4), (C2×C4).85(C22×D5), (C2×C5⋊D4).68C22, (C5×C22⋊C4).73C22, SmallGroup(320,1376)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C4223D10
C1C5C10C2×C10C22×D5C23×D5D5×C22⋊C4 — C4223D10
C5C2×C10 — C4223D10

Subgroups: 1134 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C4 [×10], C22, C22 [×20], C5, C2×C4 [×6], C2×C4 [×8], D4 [×9], Q8, C23, C23 [×8], D5 [×5], C10 [×3], C10, C42, C42, C22⋊C4 [×3], C22⋊C4 [×11], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×4], C2×D4 [×7], C2×Q8, C24, Dic5 [×4], C20 [×6], D10 [×2], D10 [×15], C2×C10, C2×C10 [×3], C2×C22⋊C4, C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4 [×2], C422C2, C422C2, Dic10, C4×D5 [×4], D20 [×7], C2×Dic5 [×4], C5⋊D4 [×2], C2×C20 [×6], C22×D5 [×4], C22×D5 [×4], C22×C10, C22.32C24, C4×Dic5, C10.D4 [×2], C4⋊Dic5, D10⋊C4 [×10], C23.D5, C4×C20, C5×C22⋊C4 [×3], C5×C4⋊C4 [×3], C2×Dic10, C2×C4×D5 [×4], C2×D20 [×5], C2×C5⋊D4 [×2], C23×D5, C4×D20, C4.D20, D5×C22⋊C4, C22⋊D20 [×2], D10.12D4, D10⋊D4, Dic5.5D4, D208C4, D10.13D4, C42D20 [×2], D10⋊Q8, C4⋊C4⋊D5, C5×C422C2, C4223D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D5 [×7], C22.32C24, C23×D5, D5×C4○D4, D48D10 [×2], C4223D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=dad=a-1b2, cbc-1=a2b, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 80 points
Generators in S80
(1 57 7 43)(2 53 8 49)(3 59 9 45)(4 55 10 41)(5 51 6 47)(11 56 16 42)(12 52 17 48)(13 58 18 44)(14 54 19 50)(15 60 20 46)(21 66 26 80)(22 76 27 62)(23 68 28 72)(24 78 29 64)(25 70 30 74)(31 73 36 69)(32 65 37 79)(33 75 38 61)(34 67 39 71)(35 77 40 63)
(1 32 17 25)(2 38 18 21)(3 34 19 27)(4 40 20 23)(5 36 16 29)(6 31 11 24)(7 37 12 30)(8 33 13 26)(9 39 14 22)(10 35 15 28)(41 77 60 72)(42 64 51 69)(43 79 52 74)(44 66 53 61)(45 71 54 76)(46 68 55 63)(47 73 56 78)(48 70 57 65)(49 75 58 80)(50 62 59 67)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 8)(2 7)(3 6)(4 10)(5 9)(11 19)(12 18)(13 17)(14 16)(15 20)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 40)(29 39)(30 38)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(61 65)(62 64)(66 70)(67 69)(71 73)(74 80)(75 79)(76 78)

G:=sub<Sym(80)| (1,57,7,43)(2,53,8,49)(3,59,9,45)(4,55,10,41)(5,51,6,47)(11,56,16,42)(12,52,17,48)(13,58,18,44)(14,54,19,50)(15,60,20,46)(21,66,26,80)(22,76,27,62)(23,68,28,72)(24,78,29,64)(25,70,30,74)(31,73,36,69)(32,65,37,79)(33,75,38,61)(34,67,39,71)(35,77,40,63), (1,32,17,25)(2,38,18,21)(3,34,19,27)(4,40,20,23)(5,36,16,29)(6,31,11,24)(7,37,12,30)(8,33,13,26)(9,39,14,22)(10,35,15,28)(41,77,60,72)(42,64,51,69)(43,79,52,74)(44,66,53,61)(45,71,54,76)(46,68,55,63)(47,73,56,78)(48,70,57,65)(49,75,58,80)(50,62,59,67), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,10)(5,9)(11,19)(12,18)(13,17)(14,16)(15,20)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,40)(29,39)(30,38)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,65)(62,64)(66,70)(67,69)(71,73)(74,80)(75,79)(76,78)>;

G:=Group( (1,57,7,43)(2,53,8,49)(3,59,9,45)(4,55,10,41)(5,51,6,47)(11,56,16,42)(12,52,17,48)(13,58,18,44)(14,54,19,50)(15,60,20,46)(21,66,26,80)(22,76,27,62)(23,68,28,72)(24,78,29,64)(25,70,30,74)(31,73,36,69)(32,65,37,79)(33,75,38,61)(34,67,39,71)(35,77,40,63), (1,32,17,25)(2,38,18,21)(3,34,19,27)(4,40,20,23)(5,36,16,29)(6,31,11,24)(7,37,12,30)(8,33,13,26)(9,39,14,22)(10,35,15,28)(41,77,60,72)(42,64,51,69)(43,79,52,74)(44,66,53,61)(45,71,54,76)(46,68,55,63)(47,73,56,78)(48,70,57,65)(49,75,58,80)(50,62,59,67), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,10)(5,9)(11,19)(12,18)(13,17)(14,16)(15,20)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,40)(29,39)(30,38)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(61,65)(62,64)(66,70)(67,69)(71,73)(74,80)(75,79)(76,78) );

G=PermutationGroup([(1,57,7,43),(2,53,8,49),(3,59,9,45),(4,55,10,41),(5,51,6,47),(11,56,16,42),(12,52,17,48),(13,58,18,44),(14,54,19,50),(15,60,20,46),(21,66,26,80),(22,76,27,62),(23,68,28,72),(24,78,29,64),(25,70,30,74),(31,73,36,69),(32,65,37,79),(33,75,38,61),(34,67,39,71),(35,77,40,63)], [(1,32,17,25),(2,38,18,21),(3,34,19,27),(4,40,20,23),(5,36,16,29),(6,31,11,24),(7,37,12,30),(8,33,13,26),(9,39,14,22),(10,35,15,28),(41,77,60,72),(42,64,51,69),(43,79,52,74),(44,66,53,61),(45,71,54,76),(46,68,55,63),(47,73,56,78),(48,70,57,65),(49,75,58,80),(50,62,59,67)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,8),(2,7),(3,6),(4,10),(5,9),(11,19),(12,18),(13,17),(14,16),(15,20),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,40),(29,39),(30,38),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(61,65),(62,64),(66,70),(67,69),(71,73),(74,80),(75,79),(76,78)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
0320000
0000119
00003230
0011900
00323000
,
1370000
21400000
000010
000001
001000
000100
,
100000
21400000
007700
00344000
00003434
000071
,
100000
21400000
00343400
001700
00003434
000017

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,11,32,0,0,0,0,9,30,0,0,11,32,0,0,0,0,9,30,0,0],[1,21,0,0,0,0,37,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,21,0,0,0,0,0,40,0,0,0,0,0,0,7,34,0,0,0,0,7,40,0,0,0,0,0,0,34,7,0,0,0,0,34,1],[1,21,0,0,0,0,0,40,0,0,0,0,0,0,34,1,0,0,0,0,34,7,0,0,0,0,0,0,34,1,0,0,0,0,34,7] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C···4G4H4I4J4K4L5A5B10A···10F10G10H20A···20L20M···20R
order1222222222444···4444445510···10101020···2020···20
size111141010202020224···41010202020222···2884···48···8

50 irreducible representations

dim1111111111111122222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D102+ (1+4)D5×C4○D4D48D10
kernelC4223D10C4×D20C4.D20D5×C22⋊C4C22⋊D20D10.12D4D10⋊D4Dic5.5D4D208C4D10.13D4C42D20D10⋊Q8C4⋊C4⋊D5C5×C422C2C422C2D10C42C22⋊C4C4⋊C4C10C2C2
# reps1111211111211124266248

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{23}D_{10}
% in TeX

G:=Group("C4^2:23D10");
// GroupNames label

G:=SmallGroup(320,1376);
// by ID

G=gap.SmallGroup(320,1376);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,219,184,675,570,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽